Destruction de l'environnement

Disponible uniquement sur Etudier
  • Pages : 2 (453 mots )
  • Téléchargement(s) : 0
  • Publié le : 19 août 2010
Lire le document complet
Aperçu du document
ÉQUATIONS ET INÉQUATIONS DU SECOND DEGRÉ I. Résoudre une équation du second degré:
x2 − x − 6 = 0 ax 2 + bx + c = 0 ∆ = b 2 − 4ac

• Exemple : résoudre l'équation • Méthode algébrique : L'équationest de la forme On calcule le discriminant : - ∆ < 0 ⇒ pas de solution
- ∆ = 0 ⇒ une solution double - ∆ > 0 ⇒ deux solutions

• Solution algébrique :

b 2a −b − ∆ −b + ∆ x′ = et x′′ = 2a 2a x′= x′′ = −
∆ = ( −1) − 4 × ( −6) = 1 + 24 = 25 donc ∆ > 0 Deux solutions : −( −1) − 25 1 − 5 x′ = = = −2 2 2 −( −1) + 25 1 + 5 x′′ = = =3 2 2
2

• Solution graphique : L'équation peut s'écrire : x2 = x + 6 On trace la parabole d'équation y = x 2 On trace la droite d'équation y = x + 6 Les solutions sont les abscisses des points d'intersection de la parabole et de la droite
10 9 8 7 6 5 4 3 21 0 -4 -3 -2 -1 0 1 2 3 4

Les solutions sont donc x = −2 et x = 3 .

FI_EQ2.DOC

II. Factoriser le trinôme du second degré :
• Exemple : factoriser le trinôme P( x ) = 3x 2 + 5x − 12 •Méthode : si le trinôme P( x ) = ax 2 + bx + c n'a pas de racines on ne peut pas le factoriser si le trinôme P( x ) = ax 2 + bx + c a deux racines x′ et x′′ il peut s'écrire P( x ) = a( x − x′)( x − x′′) •Solution : ∆ = 25 − 4 × ( −12 × 3) = 25 + 144 = 169 −5 − 169 −5 − 13 x′ = = = −3 2×3 6 −5 + 169 −5 + 13 4 x′′ = = = 2×3 6 3 4 4   D'où P( x ) = 3[ x − ( −3) ]  x −  = 3( x + 3)  x −    3 3( x ) = ( x + 3)( 3x − 4) Et P

III. Résoudre une inéquation du second degré :
• Exemple : résoudre l'inéquation : 2 x 2 + 9 x − 5 ≤ 0 • Méthode : s'il n'y a pas de racine le trinôme P( x ) = ax 2+ bx + c est du signe de a. s'il y a des racines on factorise le trinôme, on étudie le signe de chaque facteur et on applique la règle du signe d'un produit • Solution : ∆ = 81 − 4 × ( −5 × 2) = 121−9 − 121 −20 x′ = = = −5 2×2 4 −9 + 121 2 1 x′′ = = = 2×2 4 2 ( x + 5)( 2 x − 1) ≤ 0 L'inéquation devient donc : On étudie le signe de x + 5 x + 5 > 0 ⇔ x > −5 1 On étudie le signe de 2 x − 1 2x − 1...
tracking img