Process aleatoire

Disponible uniquement sur Etudier
  • Pages : 299 (74566 mots )
  • Téléchargement(s) : 0
  • Publié le : 9 mars 2010
Lire le document complet
Aperçu du document
Probability, Random Processes, and Ergodic Properties

ii

Probability, Random Processes, and Ergodic Properties
Robert M. Gray Information Systems Laboratory Electrical Engineering Department Stanford University

Springer-Verlag New York

iv

c 1987 by Springer Verlag. Revised 2001 and 2006–2007 by Robert M. Gray.

v

This book is affectionately dedicated to the memory ofElizabeth Dubois Jordan Gray 1906–1998 R. Adm. Augustine Heard Gray, U.S.N. 1888-1981 Sara Jean Dubois and William “Old Billy” Gray 1750-1825

vi

Contents
Contents Preface 1 Probability and Random Processes 1.1 Introduction . . . . . . . . . . . . . . . . . . 1.2 Probability Spaces and Random Variables . 1.3 Random Processes and Dynamical Systems 1.4 Distributions . . . . . . . . . . . . . . .. . 1.5 Extension . . . . . . . . . . . . . . . . . . . 1.6 Isomorphism . . . . . . . . . . . . . . . . . 2 Standard alphabets 2.1 Extension of Probability Measures . 2.2 Standard Spaces . . . . . . . . . . . 2.3 Some properties of standard spaces . 2.4 Simple standard spaces . . . . . . . . 2.5 Metric Spaces . . . . . . . . . . . . . 2.6 Extension in Standard Spaces . . . . 2.7 The KolmogorovExtension Theorem 2.8 Extension Without a Basis . . . . . vii ix 1 1 1 6 8 13 19 21 21 22 26 29 31 36 37 38 45 45 48 54 61 61 61 64 67 77 80 87

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

.. . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . .. . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

3 Borel Spaces and Polish alphabets 3.1 Borel Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Polish Spaces . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 3.3 Polish Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Averages 4.1 Introduction . . . . . . . . . . . . . 4.2 Discrete Measurements . . . . . . . 4.3 Quantization . . . . . . . . . . . . 4.4 Expectation . . . . . . . . . . . . . 4.5 Time Averages . . . . . . . . . . . 4.6 Convergence of Random Variables 4.7 StationaryAverages . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

vii

viii 5 Conditional Probability and Expectation 5.1 Introduction . . . . . . . . . . . . . . . . . 5.2 Measurements and Events . . . . . . . . . 5.3 Restrictions of Measures . . . . . . . . . . 5.4 Elementary Conditional Probability . . . 5.5 Projections . . . . . . . . . . . . . . . . .5.6 The Radon-Nikodym Theorem . . . . . . 5.7 Conditional Probability . . . . . . . . . . 5.8 Regular Conditional Probability . . . . . 5.9 Conditional Expectation . . . . . . . . . . 5.10 Independence and Markov Chains . . . .

CONTENTS 91 91 91 95 95 98 101 104 106 109 115 119 119 122 127 134 138 140 142 149 149 149 154 156 160 169 169 170 176 182 183 186 188 191 194 197 201

. . . . . . . ....
tracking img