Tagemage gmat

Disponible uniquement sur Etudier
  • Pages : 23 (5615 mots )
  • Téléchargement(s) : 0
  • Publié le : 13 avril 2011
Lire le document complet
Aperçu du document
-------------------------------------------------

-------------------------------------------------

-------------------------------------------------

-------------------------------------------------

-------------------------------------------------

-------------------------------------------------

--------------------------------------------------------------------------------------------------

-------------------------------------------------

-------------------------------------------------
Atelier d'aide à la préparation
-------------------------------------------------
au Tage-Mage et au GMAT
-------------------------------------------------

-------------------------------------------------

--------------------------------------------------------------------------------------------------

-------------------------------------------------
Atelier de mathématiques
-------------------------------------------------

-------------------------------------------------

-------------------------------------------------

-------------------------------------------------
Samedi 6 février de 9h à 15h : salle Ernst & Young-------------------------------------------------
Samedi 13 février de 9h à 15h : salle Ernst & Young
-------------------------------------------------
Samedi 20 février de 9h à 15h : salle Ernst & Young
-------------------------------------------------
Samedi 27 février de 9h à 15h : salle Ernst & Young
--------------------------------------------------------------------------------------------------

-------------------------------------------------
Professeur : Élisabeth Mercier

ARITHMÉTIQUE

1. If x, y, and z are positive integers such that and x is even, y is odd, and z is prime, which of the following is positive value of?

(A) 4
(B) 5
(C) 11
(D) 15
(E) 18

2. If and , what is the minimum value of?

(A)
(B)(C)
(D)
(E)

3. If P represents the product of the first 15 positive integers, then P is NOT a multiple of

(A) 99
(B) 84
(C) 72
(D) 65
(E) 57

4.
The integers r and s are distinct,, and If, which of the following must be true?

I.
II.
III.

(A) None
(B) I only
(C) II only
(D) III only
(E) I, II, andIII

5. Which of the following represents the greatest value?

(A)
(B)
(C)
(D)
(E)

6. If the sum of five consecutive positive integers is a, then the sum of the next five consecutive integers in terms of a is

(A)
(B)
(C)
(D)
(E)

ALGÈBRE
1. Si , alors
(A)
(B)
(C)
(D)(E)

2. Si et, alors
(A)
(B)
(C) 12
(D)
(E)

3. For all a and b,

(A)
(B)
(C)
(D)
(E)

4. Si , alors
(A)
(B)
(C)
(D)
(E)
5. If and , which of the following represents the range of all possible values of?

(A)
(B)
(C)(D)
(E)

6. Si et , alors

(A)
(B)
(C)
(D)
(E)

7. Si , alors

(A)
(B)
(C)
(D)
(E)

GÉOMETRIE

1. In circle O above, if is a right triangle and radius , what is the area of the shaded region?

(A)
(B)
(C)
(D)
(E)

2. In the figure above, ABCD is arectangle. If the area is 8, what is the area of?

(A) 8
(B) 12
(C) 16
(D) 24
(E) 32

3. In the figure above, if semicircles A and B each have area, what is the area of semicircle C?

(A)
(B)
(C)
(D)
(E) 16

4. In the figure above, ABCD is a rectangle and DA and CB is radii of the circles shown. If, what is...
tracking img