Formulaire trigonometrie
- Addition cos(A + B) = cos(A).cos(B) - sin(A).sin(B) cos(A - B) = cos(A).cos(B) + sin(A).sin(B) sin(A + B) = sin(A).cos(B) + sin(B).cos(A) sin(A - B) = sin(A).cos(B) - sin(B).cos(A) tan(A + B) = tan(A - B) =
- Formules appliquées à l'angle double sin(2.) = 2.sin().cos() cos(2.) = cos²() - sin²() = 2.cos²() - 1 = 1 - 2.sin²() tan(2.) =
- Transformation d'une somme en produit cos(p) + cos(q) = 2.cos().cos() cos(p) - cos(q) = -2.sin().sin() sin(p) + sin(q) = 2.sin().cos() sin(p) - sin(q) = 2.cos().sin()
- Transformation d'un produit en somme cos(p).cos(q) = .[cos(p-q) + cos(p+q)] sin(p).sin(q) = .[cos(p-q) - cos(p+q)] sin(p).cos(q) = .[sin(p+q) + sin(p-q)]
II. Inversion des fonctions circulaires * Arccos x R, = Arccos(-x) + Arccos(x) x [-1,1] , sin(Arccos(x)) =
(Arccos)'(x) = * Arcsin x [-1,1], cos(Arcsin(x)) =
= Arccos(x) + Arcsin(x)
(Arcsin)'(x) = * Arctan x 0, Arctan(x) + Arctan() = (signe(x)). cos(Arctan(x)) = sin(Arctan(x)) =
(Arctan)'(x) =
III. Fonctions hyperboliques * Directes
- Généralités ch(x) = sh(x) = th(x) = ch(-x) = ch(x) sh(-x) = -sh(x) ch(x) + sh(x) = ex ch(x) - sh(x) = e-x ch²(x) - sh²(x) = 1 1 - th²(x) =
(ch)'(x) = sh(x) (sh)'(x) = ch(x)
- Addition ch(A + B) = ch(A).ch(B) + sh(A).sh(B) ch(A - B) = ch(A).ch(B) - sh(A).sh(B) sh(A + B) =