LOI DE FISHER
En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue[1],[2],[3]. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que distribution de l'hypothèse nulle dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les test de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Caractérisation
Une variable aléatoire réelle distribuée selon la loi de Fisher peut être construite comme le quotient de deux variables aléatoires indépendantes, U1 et U2, distribuées chacune selon une Loi du χ² et ajustées pour leurs nombres de degrés de liberté, respectivement d1 et d2 : .
La densité de probabilité d'une loi de Fisher, F(d1, d2), est donnée par pour tout réel x ≥ 0, où d1 et d2 sont des entiers positifs et B est la fonction bêta.
La fonction de répartition associée est : où I est la fonction bêta incomplète régularisée.
La loi binomiale est liée à la loi de Fisher par la propriété suivante[4]: si X suit une loi binomiale de paramètres n et p, et si k est un entier compris entre 0 et n, alors où F suit une loi de Fischer de paramètres avec
L'espérance, la variance valent respectivement pour d2 > 2 et pour d2 > 4. Pour d2 > 8, le kurtosis normalisé est .
Généralisation
Une généralisation de la loi de Fisher est la loi de Fisher non centrée.
Distributions associées et propriétés
Si alors est distribuée selon une loi du χ² ;
La loi est équivalente à la loi T² de Hotelling ;
Si alors ;
Si est distribuée selon une loi de Student alors ;
Si est distribuée selon une loi normale alors ;
Si et alors est distribuée selon une loi bêta;
Si est le quantile d'ordre pour et que est le quantile d'ordre pour alors .