Elasticité

Pages: 10 (2379 mots) Publié le: 1 juillet 2011
Travaux Dirig´s de e M´canique des Solides D´formables e e Maˆtrise/Master de M´canique ı e
L. Champaney 10 d´cembre 2003 e
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Principe des Puissances Virtuelles Tenseur des Contraintes Cercles de Mohr D´formations e Elasticit´ Lin´aire e e R´solution d’un probl`me d’Elasticit´ Lin´aire e e e e Solutions de St Venant Thermo´lasticit´ lin´aire e e eProbl`mes Plans e M´thodes Energ´tiques : Approximation de Solution e e M´thodes Energ´tiques : Th´or`me d’Encadrement e e e e Plasticit´ : crit`res et comportement e e Plaques en flexion Plaques en tension

1

UVSQ - Maˆ ıtrise de M´canique - UE1 e

2003/2004

TD - Principe des Puissances Virtuelles

Exercice 1 Application du principe des puissances virtuelles a la th´orie des barres. ` eOn se propose de retrouver les r´sultats de la m´canique des barres par la m´thode des puise e e sances virtuelles. Cette m´thode est plus abstraite mais pr´sente l’int´rˆt d’ˆtre plus puissante et de e e ee e mener syst´matiquement a des mod´lisations coh´rentes des d´formations et des efforts int´rieurs e ` e e e e dans les milieux continus. La repr´sentation g´om´trique de la barre est lasuivante : la barre est par d´finition un milieu e e e e rectiligne ´lanc´ o` une dimension est tr`s pr´pond´rante devant les deux autres. Il peut donc ˆtre e e u e e e e d´fini par la seule donn´e des points situ´s sur la ligne moyenne. Cet ´l´ment ne fonctionne qu’en e e e ee traction ou en compression. Tous les points de la barre restent sur l’axe AB. Un mouvement virtuel est d´fini par la donn´e de lavitesse virtuelle u∗ (x) en chacun des points de la ligne moyenne. e e

F1 A

dx f(x)dx B

F2 x

1. Rappeler le principe des puissances virtuelles. 2. On consid`re une barre AB, A d’abscisse x1 et B d’abscisse x2 . On note f (x) la densit´ e e lin´ique d’effort exerc´e sur le fil, F1 et F2 les forces exerc´es aux extr´mit´s et g(x) la e e e e e quantit´ d’acc´l´ration lin´ique. e ee e (a)Exprimer la puissance virtuelle des efforts ext´rieurs ainsi que la puissance virtuelles e des quantit´s d’acc´l´ration. e ee (b) On prend pour la puissance des efforts int´rieurs la forme la plus simple possible qui e soit une forme lin´aire du u∗ (x) : e
x2

Pi∗ = −
x1

A(x)u∗ (x) + N (x)

du∗ (x) dx dx

Montrer que A(x) est n´cessairement nul. e 3. Par application du principe despuissances virtuelles, trouver les ´quations locales du moue vement et les conditions aux fronti`res e Exercice 2 Contraintes moyennes Un solide, de domaine ∆ de volume V , est en ´quilibre sous l’effet d’un syst`me d’efforts ext´e e e rieurs : f efforts volumiques et T efforts surfaciques sur la surface ext´rieures ∂∆. e On d´finit sur le domaine ∆ un champ de vitesses virtuelles V ∗ (x) = Vi∗ (x)ei avec Vi∗(x) = e Aij xj . Les Aij sont des donn´es constantes telles que Aij = Aji . e 1. Exprimer le principe des puissances virtuelles. En d´duire une valeur moyenne des compoe ¯ santes du tenseur σ . 2. Application : le solide consid´r´ est une poutre droite de longueur L, de g´n´ratrices parall`les ee e e e a (O,x3 ), d’aire de section S. Ie supporte les efforts suivants : ` – pas d’efforts volumiques,– pas d’efforts surfaciques sur la surface lat´rale de la poutre, e – sur la section x3 = L, le champ de forces surfaciques est T = – sur la section x3 = 0, le champ de forces surfaciques est T = ¯ D´terminer la valeur moyenne de σ d´finie par σ moyen = e ¯ e 2
1 V ∆

F S e3 , − F e3 , S

σ dv. ¯

UVSQ - Maˆ ıtrise de M´canique - UE1 e

2003/2004

TD - Tenseur des Contraintes

Exercice 1Conditions aux limites Une sph`re creuse (rayon int´rieur r1 , rayon ext´rieur r2 ) est soumise ` une pression int´rieure e e e a e p1 et ` une pression ext´rieure p2 . Le tenseur des contraintes, dont la forme est suppos´e connue, a e e est caract´ris´, dans la base locale associ´e aux coordonn´es sph´riques (r, θ et ϕ), par la matrice : e e e e e   σr 0 0 2B B σ =  0 σθ 0  avec σr = A −...
Lire le document complet

Veuillez vous inscrire pour avoir accès au document.

Vous pouvez également trouver ces documents utiles

  • Elasticité
  • SES elasticité
  • Élasticité-revenu élasticité-prix
  • cours elasticite
  • Elasticité neurale
  • Élasticités prix
  • SES Élasticité prix
  • elasticité de la demande

Devenez membre d'Etudier

Inscrivez-vous
c'est gratuit !