1

Pages: 4 (1122 mots) Publié le: 15 mars 2015
2nde ISI

2009-2010

Fonctions chapitre 1

GÉNÉRALITÉS
Table des matières
I

Définitions
I.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I.2Tableau de valeurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I.3 Courbe représentative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II Étude qualitative de fonctions
II.1 Sens de variation . . . . . . .
II.2 Tableau de variations . . . . .
II.3 Extremum . . . . . . . . . . .
II.4 Tableau de signes . . . . . . .

.
.
.
.

.
.
.
.⋆

I

.
.
.
.

.
.
.
.


.
.
.
.

.
.
.
.

.
.
.
.



.
.
.
.

.
.
.
.


.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
..
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

1
1
2
2
3
3
4
4
5

.
.
.
.

⋆ ⋆

Définitions

I.1

Vocabulaire

Définition 1
Une fonction est un procédé qui àun nombre x appartenant à un ensemble D associe un nombre y.
f

On note : x → y ou encore f : x → y ou encore y = f (x).
On dit que y est l’image de x par la fonction f et que x est un antécédent dey par la fonction f .

Exemple 1
Soit g la fonction définie par g(x) = x2 + 3.
➔ L’image de 5 est g(5) = 52 + 3 = 28,
➔ Les antécédents de 7 vérifient g(x) = 7 c’est à dire x2 + 3 = 7 soit x = −2 ou x= 2,
➔ Il n’y a pas d’antécédent de 1 car l’équation g(x) = 1 n’a pas de solution : x2 + 3 = 1 ⇐⇒ x2 = −2.

Définition 2
Pour une fonction f donnée, l’ensemble de tous les nombres réels qui ont uneimage calculable par
cette fonction est appelé ensemble de définition de la fonction f , que l’on notera Df .

Exemple 2
La fonction f : x →

1
a pour ensemble de définition ] − ∞; 2 [ ∪] 2; +∞[.
2x −4
1
➔ En effet, l’expression
n’a de sens que pour les valeurs de x telles que 2x − 4 = 0 (car le dénominateur
2x − 4
d’une fraction ne peut être égal à 0), c’est-à-dire pour x = 2,
➔ On dira aussi...
Lire le document complet

Veuillez vous inscrire pour avoir accès au document.

Vous pouvez également trouver ces documents utiles

  • 1 1 1 La Production
  • 1 1
  • 1
  • 1
  • LA N 1
  • 1
  • 1
  • 1

Devenez membre d'Etudier

Inscrivez-vous
c'est gratuit !