La Démonstration

Pages: 11 (2731 mots) Publié le: 18 novembre 2015
La Démonstration
La démonstration est : « raisonnement par lequel une proposition devient certaine » Leibniz
Cette notion a des liens avec le chapitre La Raison et le Réel et avec La matière et l’esprit car la démonstration
semble être l’exercice le plus accompli de la raison, au sens où il se caractérise par une cohérence avec le réel,
par une fiabilité capable de fonder la connaissance du réel.De surcroit, cette « méthode » pour penser le monde
pourrait nous rapprocher de la vérité…
La démonstration est-elle un mode du connaître qui révèle une façon de bien penser ? Quelle valeur peut-on
accorder à la démonstration ? Peut-elle s’appliquer à tous les domaines du réel avec la même efficacité ? Sur
quoi repose la rigueur de la démonstration ?
I : Qu’est-ce que démontrer ?
La démonstrationpeut-être opposée à l’intuition et à la démarche expérimentale dans une certaine mesure.
Démontrer c’est se servir de sa raison et penser rationnellement, c’est raisonner. La démonstration
permet d’exprimer et d’élaborer des connaissances sur lesquelles nous pouvons nous accorder. Elle prend
appui sur les règles d’une pensée rationnelle, c'est-à-dire universellement pensable dans les mêmestermes.
Elle est une pensée discursive et non intuitive.
La démonstration représente ainsi un idéal de la pensée affirmant la possibilité d’une communauté de pensée
fondée sur la reconnaissance de la liberté et de l’égalité de chacun à donner son accord à ce qui est établi par elle.
La démonstration repose sur la logique qui, au sens large, détermine et énonce les règles du raisonnement
correct.Aristote est le père fondateur de la logique formelle qui étudie les formes du raisonnement et non leur contenu. Il
s’agit de s’attacher à vérifier la validité des enchainements des propositions qui construisent un raisonnement.
La logique s’intéresse donc aux modes du connaître, en tant qu’il est possible d’en prévoir, d’en retrouver, d’en
justifier la forme dans nos discours et affirmations.
Au XIX°siècle apparaitra la logique symbolique (moderne) qui comme les mathématiques utilisera des
symboles et non plus des mots pour décrire et examiner les modes du raisonnement discursif.
Aujourd’hui cette logique est un outil des mathématiciens, en plus d’être à l’origine des langages informatiques.
(G. Boole : logicien anglais, 1815-1864)
Jusqu’au XX° siècle un des principes de la logique consistait àdire qu’une proposition est soit vraie, soit fausse,
c’est ce qu’on appelle le principe du tiers exclu ou de non contradiction.
Pourtant, plusieurs remarques peuvent d’ores et déjà être faites au sujet de la rigueur du raisonnement reposant
sur la logique :




Depuis le milieu du XX° siècle on a remis en cause le principe du tiers exclu en affirmant que des
propositions peuvent êtreindécidables ou seulement possibles ou vraisemblables (c’est-à-dire ni vraies
ni fausses). En mathématiques les calculs plurivalents admettent d’autres valeurs de vérité que le vrai et
le faux. Il y aurait du probable entre le vrai et le faux. Cf. théorème du mathématicien autrichien K.
Gödel.
Dans un raisonnement (enchainement de propositions dont chacune prépare ou légitime l’une des
suivantes jusqu’àconclusion), il s’agit d’analyser la démarche de l’esprit dans sa manière d’agencer les
propositions. Mais on ne peut négliger l’étude des propositions elles-mêmes, qui elle se ramène à
l’examen des termes qui les constituent et de la relation qu’ils affirment.

En somme, la pensée logique, avec les formes de raisonnement qui l’expriment, se trouve dominer par
l’affirmation de principes auxquels noussommes tentés d’accorder une présence essentielle. Nous devons les
respecter parce que nous reconnaissons par là : « ce que l’esprit se doit à lui-même » (Alain).
« Souffrez donc cette vérité ; vous portez en vous-même certaines idées d’une extraordinaire généralité ; et vous
les portez constamment, en ce sens qu’elles sont prêtes à surgir à toute heure du jour et de la nuit, pour peu
qu’on les...
Lire le document complet

Veuillez vous inscrire pour avoir accès au document.

Vous pouvez également trouver ces documents utiles

  • La démonstration
  • Demonstration
  • Démonstration
  • Démonstration
  • Démonstration
  • Demonstration
  • Démonstration
  • La démonstration

Devenez membre d'Etudier

Inscrivez-vous
c'est gratuit !