Le photon
Le concept de photon a été développé par Max Planck puis repris par Albert Einstein entre 1905 et 1917 pour expliquer des observations expérimentales qui ne pouvaient être comprises dans le cadre d’un modèle ondulatoire classique de la lumière[4],[5],[6],[7]. Il a ainsi montré que parallèlement à son comportement ondulatoire — interférences et diffraction —, la propagation du champ électromagnétique présente simultanément des propriétés corpusculaires. Les photons sont des « paquets » d’énergie élémentaires, ou quanta de rayonnement électromagnétique, qui sont échangés lors de l’absorption ou de l’émission de lumière par la matière. De plus, l’énergie et la quantité de mouvement (pression de radiation) d’une onde électromagnétique monochromatique sont égales à un nombre entier de fois celles d’un photon.
Le concept de photon a donné lieu à des avancées importantes en physique expérimentale et théorique, telles que les lasers, les condensats de Bose-Einstein, l’optique quantique, la théorie quantique des champs et l’interprétation probabiliste de la mécanique quantique. Le photon est une particule de spin égal à 1, c’est donc un boson[8], et sa masse est nulle.
L’énergie d’un photon de lumière visible est de l’ordre de 2 eV, soit environ 109 fois moins que l’énergie nécessaire pour créer un atome d’hydrogène. En conséquence, les sources de rayonnement habituelles (antennes, lampes, laser, etc.) produisent de très grandes quantités de photons[9], ce qui explique que la nature « granulaire » de l’énergie lumineuse soit négligeable dans de nombreuses situations physiques. Il est cependant possible de produire des photons un par un grâce aux processus suivants :
transition électronique ; transition nucléaire ; annihilation de paires particule-antiparticule.
Enfin, en physique des particules, le photon est la particule médiatrice de l’interaction électromagnétique. Autrement dit, lorsque deux