Math

6389 mots 26 pages
CHAPITRE

1 exercice 1 2

Généralités sur les fonctions

1 Les prérequis : « Vérifier les acquis » prérequis testés Reconnaître si une courbe représente une fonction et, si oui, savoir reconnaître la variable, la grandeur étudiée et l’ensemble de définition. Savoir utiliser le sens de variation d’une fonction. Reconnaître une fonction de référence à partir de sa représentation graphique. réponses a) La variable est le temps et la grandeur étudiée est la population. b) À toute valeur du temps correspond une seule valeur de la population. c) [ 0 ; 8 ] . 3 f  --  2 1. a) x 2. f (2) f (4) . b) x x2 c) x 1–x

sin ( x )

1 3 –1 – π 2

1 π 2

1 1

x→x+1 Connaître le sens de variation des fonctions de référence. Savoir décomposer une fonction en un enchaînement de fonctions élémentaires. 5

x → cos ( x )

1 x → -x

4

a) fonction décroissante sur . b) fonction décroissante sur ] – ∞ ; 0[ et sur ]0 ; + ∞[ . c) fonction croissante sur +. u : ]0 ; + ∞[ → v : ]0 ; + ∞[ → 1 -x x x2 x alors f = v u = u v ° ° 1 2 1 car pour x 0 f ( x ) =  -- = --- x x2

2 Objectifs
• Connaître la définition des opérations sur les fonctions u u + v , uv , λu, u + λ, -- et u v . ° v • Étudier la stabilité de certaines familles de fonctions. • Décomposer une fonction à l’aide des fonctions de référence. • Connaître les théorèmes du cours concernant le sens de variation des fonctions u + λ, λu et u v .

• Représenter graphiquement une fonction en utilisant les représentations des fonctions de référence. • Représenter graphiquement une fonction x → f ( x + λ ).

3 Activités d’approche
3.1 Une famille de fonctions u
1. b) • Si λ 0 les courbes λ sont au-dessus de l’axe des abscisses. • Si λ = 0 les courbes λ sont l’axe des abscisses. • Si λ 0 les courbes λ sont au-dessous de l’axe des abscisses. 2. a) Si A ( x ; 0 ) , N est le symétrique de A par rapport au point M. b) On en déduit la construction point par point de 2 à partir de 1 .

°

• Étudier le sens de

en relation

  • Math
    257 mots | 2 pages
  • Math
    1010 mots | 5 pages
  • Math
    949 mots | 4 pages
  • Math
    298 mots | 2 pages
  • math
    466 mots | 2 pages
  • Math
    517 mots | 3 pages
  • Math
    977 mots | 4 pages
  • math
    416 mots | 2 pages
  • math
    4153 mots | 17 pages
  • Math
    4444 mots | 18 pages