Propolis

532 mots 3 pages
Si f est une fonction continue sur un intervalle I, alors il existe au moins une fonction F dérivable sur I telle que f soit la dérivée de F sur I.
On dit alors que F est une primitive de f sur I
Définition Générale:
F est une primitive de f sur I si et seulement si F est dérivable sur I et si pour tout x dans I, F '(x) = f (x). |Par exemple, si f est définie que IR par: f(x) = 2x, on remarque que la fonction F définie sur IR par F(x) = x² admet pour dérivée f.
F est une primitive de f sur IR.
Autre exemple, si f est définie par f(x)=2x+1, alors la fontion F définie par F(x)=x²+x+1 est une primitive de f sur IR car la dérivée de F est f sur IR | |
|On remarque que si F est une primitive de f sur I, alors pour toute constante k, la fonction G |Si f est définie sur IR par : |
|définie par G (x) = F (x) + k est aussi une primitive de f sur I car la dérivée d'une constante est |f(x) = 2x - 1 |
|la fonction nulle. |alors la fonction F définie sur IR par |
|On en déduit alors la propriété suivante: |F(x) = x² - x |
|Propriété 1: Ensemble des primitives de f: |est une primitive de f sur IR. |
|Si f admet une primitive F sur I alors l'ensemble des primitives de f sur I est l'ensemble des |Donc les primitives de f sur IR sont les|
|fonctions G dérivables sur I telles qu'il existe une constante k pour laquelle : G(x) = F (x) + k |fonctions de la forme : |
| |G(x) = x² - x + k , k constante réelle |
| |[pic] |
|Si f admet une primitive sur

en relation

  • Zeriikh
    3379 mots | 14 pages
  • Zwamal
    44025 mots | 177 pages
  • La france dans les années 20
    2505 mots | 11 pages
  • Développement d'un complément alimentaire pour l'immunité
    6088 mots | 25 pages
  • truc et astuce
    307 mots | 2 pages
  • les produits de la ruche
    860 mots | 4 pages
  • Aloes et c vertu
    30665 mots | 123 pages
  • Chimecam
    438 mots | 2 pages
  • Miel
    2717 mots | 11 pages
  • Exercice
    937 mots | 4 pages