complexe

Disponible uniquement sur Etudier
  • Pages : 3 (547 mots )
  • Téléchargement(s) : 0
  • Publié le : 20 avril 2014
Lire le document complet
Aperçu du document
Lycée Pilote Tunis
Mr. Masmoudi. R.
3° année
Série d’exercices (Complexes)

Exercice1 :
1) Ecrire sous forme cartésienne chacun des complexes suivants :
(1+i)2; (3i+2)2; (1+i)(1-i)2;(-2+i)(-2-i) ; (2-3i)-1 ; ;(x+i) (x-I) et  ; où x.
2) Résoudre dans les équations suivantes : (E)  : 2iz – 3i + z (1 + i) = 0.(E’) : 2z – 2 + iz = 8 - 6i + (1+2i)z.
3) Pour tout complexe z on pose f(z) = az + b ; où a et b deux complexes.
a) Déterminer a et b pour que f(1+i) = -1+2i et f(3+2i) = 3+6i.
b)Calculer alors f(i) et f(-1).
Exercice2 :
Pour tout complexe z on pose f(z) = z2 – 5iz –4.
1) Calculer f(i) ; f(1+i) ; f(3+5i/2)  et f(4i).
2) Soit  un nombre complexe ; déterminer en fonction de, les solutions de l’équation f(z) = f().
3) Montrer que si z est imaginaire pur alors f(z) est réel.
4) Déterminer l’ensemble E des complexes z tels que f(z) soit réel.
Exercice3 :

a) Calculerles coordonnées de M’ en fonction de celles de M.
b) Donner une équation cartésienne de l’ensemble H des points M(z) tels que z’ soit imaginaire pur.
c) Donner une équation cartésienne de l’ensembleK des points M(z) tels que |z’|= .
Exercice4 :
Déterminer l’ensemble des points M(z) dans chacun des cas suivants :
1) z2 – (1-2i)2 = 2– (1+2i)2 .
2) ( z – 1 – i ) (  – 1 + i ) = 5.3) z +  = |z|2 .
4) ( z – i ) (  + i ) = 2 .
5) soit réel ; puis imaginaire pur.
6) Ré[ ] = 1.
7) || = 2.
8) | z - 3i | = | 2i + z |


Exercice5 :
Le plan étant rapporté à unrepère orthonormé (O,,). On donne A(4+2i), B(-2-i) et M(z) où z est un complexe. On pose Z= .
Déterminer l’ensemble des points M dans chacun des cas suivants :
1) |Z|=1 2) |Z|=2 3)Z est un réel positif 4) Z imaginaire pur.
Exercice6 :
A tout complexe z on associe f(z)= .
1) On note A le point d’affixe a=1+2i ; déterminer les coordonnées du point A’ d’affixe f(a)...
tracking img