suites

Pages: 3 (861 mots) Publié le: 10 novembre 2015
Formules concernant les suites arithmétiques et les suites géométriques
I Suites arithmétiques
1°) Définition :
On appelle suite arithmétique une suite de nombres où on passe d’un terme au suivanten
ajoutant toujours le même nombre (ce nombre est appelé raison de la suite arithmétique et est
souvent noté r).
2°) Exemple :
Suite arithmétique de premier terme 2 et de raison 3 :
2 5 8 11 14 17etc.
3°) Notations possibles :
Si on note u0 le premier terme, on a : u0 = 2, u1 = 5, u 2 = 8, etc. et, dans ce cas, u n est le
(n + 1)ème terme.
Si on note u1 le premier terme, on a : u1 = 2, u2 = 5, u 3= 8, etc. et, dans ce cas, u n est le
nème terme.
Dans les deux cas, u (n+1) = un + r
4°) Formule permettant de calculer le nème terme d’une suite arithmétique :
nème terme = premier terme + (n – 1)× r
Remarque :
Si on note u0 le premier terme, on a : un = (n + 1)ème terme = u0 + nr
Si on note u1 le premier terme, on a : un = nème terme = u1 + (n - 1)r
Exemple : le 12ème terme de la suitearithmétique de premier terme 2 et de raison 3 vaut
2 + 11×3 soit 35.
Remarque :
Ce 12ème terme est u11 si le premier terme est noté u 0.
Ce 12ème terme est u12 si le premier terme est noté u 1.
5°) Formulepermettant de calculer la somme des n premiers termes d’une suite
arithmétique :
premier terme + dernier terme
a) S = nombre de termes ×
2
b) Remarque :
Si on note u0 le premier terme, u0 + u1 + u2 + …+un = somme des (n+1) premiers termes
u un
= (n 1)  0
2
Si on note u1 le premier terme, u1 + u2 + u3 + … +un = somme des n premiers termes
u u
=n  1 n
2
http://pernoux.perso.orange.fr

c)Exemple concernant la suite arithmétique de premier terme 2 et de raison 3 :
2 + 5 + 8 + 11+14 +17 = 6 ×

2 17
= 57
2

d) Exemple « classique » (avec la suite des entiers naturels qui est la suitearithmétique
de premier terme 1 et de raison 1) :
1 + 2 + 3 + 4 + 5 + …… + (n-1) + n = n ×
donc
1 + 2 + 3 + 4 + 5 + …… + 67 + 68 =

1+ n
n(n 1)
=
2
2

68 × 69
= 2346
2

e) Remarque : une formule...
Lire le document complet

Veuillez vous inscrire pour avoir accès au document.

Vous pouvez également trouver ces documents utiles

  • Suites
  • Suites
  • Suites
  • suites
  • Suites
  • Suites
  • Les suites
  • suites

Devenez membre d'Etudier

Inscrivez-vous
c'est gratuit !